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Abstract

We present an algorithm and program called Pattern Picker that performs editing of raw peak lists derived from multidimension-

al NMR experiments with characteristic peak patterns. Pattern Picker detects groups of correlated peaks within peak lists from re-

duced dimensionality triple resonance (RD-TR) NMR spectra, with high fidelity and high yield. With typical quality RD-TR NMR

data sets, Pattern Picker performs almost as well as human analysis, and is very robust in discriminating real peak sets from noise

and other artifacts in unedited peak lists. The program uses a depth-first search algorithm with short-circuiting to efficiently explore

a search tree representing every possible combination of peaks forming a group. The Pattern Picker program is particularly valuable

for creating an automated peak picking/editing process. The Pattern Picker algorithm can be applied to a broad range of experi-

ments with distinct peak patterns including RD, G-matrix Fourier transformation (GFT) NMR spectra, and experiments to mea-

sure scalar and residual dipolar coupling, thus promoting the use of experiments that are typically harder for a human to analyze.

Since the complexity of peak patterns becomes a benefit rather than a drawback, Pattern Picker opens new opportunities in NMR

experiment design.
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1. Introduction

Advances in sample preparation, hardware for data

collection pulse sequence development and experiment

design, and software for automated analysis provide a

significant reduction in the time necessary to generate
biomolecular NMR structures [11–13,21–23,35]. Inter-
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national efforts in structural genomics centering on

‘‘high throughput’’ analysis of protein resonance assign-

ments and solution NMR protein structure determina-

tion are spearheading advances that reduce the time,

effort, and expense to generate protein resonance assign-

ments and structures [4,14,21,26]. Spurred in part by the
demand and opportunities of structural genomics, many

steps in the process of NMR data collection and analysis

have been streamlined and greatly improved. Still, the

first spectral analysis step in the NMR protein structure

determination process, peak picking and peak list edit-
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ing, requires an enormous amount of human attention.

In the case of protein resonance assignments, peak pick-

ing/editing has become the most time consuming and la-

bor intensive step. Moreover, the overall robustness of

the assignment and structure determination process is

completely reliant on the veracity of the peaks selected
in this step.

Peak picking involves distinguishing real peaks from

noise and artifacts. Some peaks are not significantly

stronger than the noise level and at least a few peaks

in most protein spectra are overlapped. In addition,

multidimensional NMR spectra often exhibit artifacts

of baseline distortions, intense solvent lines, ridges,

and/or sinc wiggles. These problems are sometimes exac-
erbated by different processing methods that can dra-

matically affect lineshape, intensity, and resolution of

peaks as well as the severity of spectral artifacts.

Most automated peak pickers [8–10,12,17,24] rely on

properties of an individual peak along with a model of

the noise in the spectrum to determine whether a peak

is valid or not; though, one approach has looked at com-

parative properties of doublets [2]. These programs test
for features of a peak that are, for the most part, the

same that a human analyzer would use: the intensity

of the peak in comparison to local noise, and the shape

of the peak. Many programs perform limited peak edit-

ing by filtering one peak list against another in compa-

rable dimensions (see for example [18]). The better

peak pickers often obtain reliable results on 2D spectra;

however, results on 3D spectra normally require signifi-
cant manual intervention.

One popular peak picker, the contour approach to

peak picking (CAPP),1 relies primarily on peak shape

[9]. After CAPP generates a contour plot, it calculates el-

lipses that best fit the contours. CAPP then detects po-

tential ridges before finally testing the ellipsoid model

of each potential peak against cut-off conditions. Al-

though the results for 2D spectra are generally quite
good, 3D spectra still require manual editing. AUTOP-

SY is another very successful peak picker [17]. It has

methods to deal with overlap and deviations from ideal

Lorentzian lineshapes, and also takes advantage of sym-

metry peaks present in some spectra (e.g., COSY, NO-

ESY). However, the strategies it employs generally do

not perform well with spectra of more than two-dimen-

sions due to low digital resolution in the indirect dimen-
sions [17].

Some experiments encode information in groups of

peaks and represent a unique challenge to standard peak
1 Abbreviations used: CAPP, contour approach to peak picking;

DFS, depth-first search; GFT, G-matrix Fourier transformation;

HSQC, heteronuclear single quantum correlation; IPAP, in-phase/

anti-phase; RD, reduced dimensionality; RD-TR, reduced dimension-

ality triple resonance; RDC, residual dipolar coupling; RMS, root

mean square.
picking algorithms, since the characteristic of the entire

group of peaks is required to extract the encoded infor-

mation. In particular, reduced dimensionality (RD) tri-

ple resonance experiments [5,7,28,30–35] encode N + 1

chemical shifts into three N-dimensional peaks, one cen-

tral peak and two outer doublet peaks, as shown in Fig.
1. Unambiguous identification of the doublet requires

the presence of the central peak [32,33]. Hence, a group

of one central and two doublet N-dimensional peaks

needs to be identified to obtain all N + 1 chemical shifts.

Technically, the joint sampling of a chemical shift with

another phase-sensitively detected dimension gives rise

to a cosine-modulation of the transfer amplitude. This

yields the doublet peaks (Fig. 1), representing the addi-

tionally encoded information. Related G-matrix Fourier

transformation (GFT) experiments encode N + K di-

mensional spectral information into a group of

2K + 1�1 N-dimensional peaks [15,16]. Several benefits

are derived from such RD and GFT experiments, in-

cluding reduced data collection times and richer patterns

of peaks, which should be more amenable to automated

peak editing algorithms.
Fig. 1. The RD-TR NMR Pattern Model. The center red peak is the

central peak of the pattern. The outer two green peaks are the doublet

peaks. The two distances marked A show the Doublet Symmetry

Equivalence Relation of the pattern. The range marked B shows the
1HN-Matching Equivalence Relation of the pattern. An analogous

range in the nitrogen dimension (not shown) represents the 15N-

Matching Equivalence Relation.
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At first glance, selecting a group of peaks would ap-

pear to make peak picking and peak list editing harder.

However, the presentation of spectral data in groups of

peaks with characteristic relationships between compo-

nents opens up new avenues for automating the process

of peak picking and editing. The constituent peaks in
RD NMR spectra satisfy a set of relationships depicted

in a common pattern. This set of relationships provides

additional constraints to verify the veracity of each peak

in a group. Instead of selecting one peak at a time, one

can select a group of peaks that, together, fulfill the pat-

tern and, hence, mutually support each other.

We have created an algorithm to edit a raw list of

peaks by selecting groups of peaks that fit a defined pat-
tern. This algorithm is applicable to any experiment pro-

viding a unique pattern of peaks. We have implemented

this algorithm in a C++ program called Pattern Picker

for the x86-Linux platform. Pattern Picker takes in

raw lists of peaks and detects groups of peaks that sat-

isfy a set of relationships describing some pattern. The

program generates both a list of all the ‘‘Peak Groups’’

along with their constituent peaks and a list of the de-
coded information (e.g., the projected dimension of an

RD experiment) contained in each Peak Group . In ad-

dition, it generates a report that displays detailed infor-

mation on each group of peaks selected, the results of

additional tests on each group, and statistics on the sam-

ple of Peak Groups. The program is designed to be very

flexible with respect to the peak patterns it can recognize

and includes facilities to easily craft new patterns. The
version of Pattern Picker described here can recognize

patterns characteristic of several RD triple resonance

(RD-TR) NMR experiments. The results presented in

this paper demonstrate the high accuracy and robust-

ness of Pattern Picker in editing peak lists derived from

a representative set of RD-TR NMR experiments.
2. Methods

2.1. Algorithm overview

Raw peak lists contain significant numbers of artifac-

tual (systematic errors) and noise peaks (non-systematic

errors). Instead of relying only on properties intrinsic to

a particular peak such as its intensity or line/peak shape,
Pattern Picker edits raw peak lists generated by simple

peak picking algorithms with the aim of distinguishing

‘‘false’’ peaks from real peaks by selecting those groups

of peaks that satisfy a specified set of relationships.

These relationships are the core representation of a pat-

tern and provide additional constraints to verify the ve-

racity of each peak in a group. Thus, peaks within a

group, satisfying specified pattern relationships, provide
mutual support for each other. As the number of these

relationships increases, the probability that an invalid
Peak Group will satisfy all of them decreases, and so

the probability of selecting an invalid group, and thus

an invalid peak, decreases.

For a particular NMR experiment, Pattern Picker

creates Peak Groups of size n, the expected number

of peaks in the pattern. For an RD-TR NMR experi-
ment the expected number of peaks or pattern size is

three. Other experiments may represent spectral data

in patterns of different sizes. Some NMR experiments

result in spectra that have patterns without a fixed size.

Such patterns would have a variable size within set

ranges.

Searching for variable size Peak Groups that satisfy a

set of relationships easily lends itself to a depth-first
search with short-circuiting [27]. A depth-first search

(DFS) methodically explores a search tree representing

every single possible Peak Group and partial Peak

Group. A DFS starts by selecting the first peak in the

group, then the second peak, then the next peak, until

it has selected all peaks for one particular group. Restat-

ed, the DFS traverses a search tree, where each node in

the tree represents a selected peak in a Peak Group until
it reaches the end node or depth of the tree, which cor-

responds to the size of the Peak Group. If the construct-

ed group satisfies all of the relationships of the

experiment, it is added to a Potential List of Peak

Groups. If the last peak added violates a relationship,

the algorithm tries another peak for this position in

the group (i.e., another sibling node in the search tree).

This represents a short-circuiting of the current search
path in the tree. If it cannot find a suitable peak, it back-

tracks (moves up to the parent node) and selects another

peak for the previous position in the group (i.e., sibling

node of the parent) and then proceeds forward again.

Short-circuiting avoids exploring unfruitful paths since

all peaks selected so far in the search must pass all test-

able relationships. Paths with earlier failed peak choices

are never explored, pruning the tree of exploration. Nor-
mally, a DFS requires exponential running time, howev-

er, the short-circuiting makes the algorithm tractable for

data sets like those generated in RD-TR and other bio-

molecular NMR experiments. Fig. 2 illustrates the pro-

cess of finding a Potential Peak Group using a DFS with

short-circuiting.

After creating the Potential List of Peak Groups, each

group is scored. The score is dependent on the particular
pattern used. Peak Groups from the Potential List are

tested for consistency, one at a time, in descending order

of their score (best first). The consistency test compares

the selected potential Peak Group against the Confirmed

List of Peak Groups to make sure that peaks are being

appropriately reused. If a Peak Group passes this test,

it is added to the Confirmed List. Once all Peak Groups

from the Potential List are tested, Pattern Picker per-
forms a statistical analysis on the Confirmed List to de-

termine if the strictness of the Relationship Tests should



Fig. 2. A depth first search with short circuiting finding a Potential Peak Group using a RD-TR NMR Pattern Model. The top of the figure shows a

portion of the doublet and center peaks from the HACAcoNH spectrum of E. coli yggU. The dotted lines represent all the search paths of the DFS.

The solid line and underlined peaks represent the single Potential Peak Group that passes all the Relationship Tests in the RD-TR NMR Pattern

Model. The bottom part of the figure shows all the groups of peaks tested during the DFS and the reason for rejection (or acceptance). The partial

groups of peaks demonstrate the short circuit testing which prevents the DFS from exploring unfruitful paths.
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be adjusted and the process repeated. After several iter-
ations, the statistical tests converge and Pattern Picker

outputs a list of Peak Groups, encoded frequency infor-

mation, and a report detailing each Peak Group and how

well it conforms to each Relationship Test.

2.2. Pattern Models

Pattern Picker is designed to identify Peak Groups

from any experiment that provides multidimensional

spectral data as a pattern of peaks. Different experi-

ments will have drastically different patterns, thus Pat-

tern Picker uses an abstract notion of a pattern called

a Pattern Model. However, sets of similar experiments

often use the same Pattern Model. For instance, the

RD-TR experiments HACAcoNH (Ha additionally en-
Table 1

Major components of a Pattern Model

Component

Set of Relationship Tests

Allowed Missing Method

Consistency Method

Decoding Method

Error Detection Method a

Outlier Detection Method a

a These methods are optional.
coded information from the Ca dimension) and HAB-
CABcoNH (Ha/Hb additionally encoded information

from the Ca/Cb dimension) [31,33–35] both share the

same underlying Pattern Model. A Pattern Model pro-

vides Pattern Picker with all the necessary experiment-

specific information to select Peak Groups from the

raw peak lists, create potential Peak Groups, check con-

sistency, add Peak Groups to a Confirmed List, decode

encoded information, detect errors and peak overlap,
and generate a report. The major components of a Pat-

tern Model are outlined in Table 1.

The Relationship Tests are the most important part of

a Pattern Model. They describe the pattern of peaks

within a group encoded by a particular NMR experi-

ment (examples of Relationship Tests from the RD-TR

NMR Pattern Model are shown in Table 2). Many,
Description

Core description of the expected pattern.

Determines if an incomplete Peak Group is permissible.

Ensures consistency of the Confirmed List.

Decodes information in a Peak Group.

Tests Confirmed List for possible error Peak Groups.

Tests for outlier Peak Groups using looser constraints.



Table 2

Relationship Tests and associated Equivalence Relations for the RD-TR NMR Pattern Model

Test/relation name Pseudo code descriptiona

Equivalence Relationship Tests
15N-Matching Equivalence Relation

Center–Doublet1 abs(C.15N.PPM � D1.15N.PPM) < 15N_cutoff

Center–Doublet2 abs(C.15N.PPM � D2.15N.PPM) < 15N_cutoff

Doublet1–Doublet2 abs(D1.15N.PPM � D2.15N.PPM) < 15N_cutoff

1HN-Matching Equivalence Relation

Center–Doublet1 abs(C.1HN.PPM � D1.1HN.PPM) < 1HN_cutoff

Center–Doublet2 abs(C.1HN.PPM � D2.1HN.PPM) < 1HN_cutoff

Doublet1–Doublet2 abs(D1.1HN.PPM � D2.1HN.PPM) < 1HN_cutoff

Doublet Symmetry Equivalence Relation S = D1.13C.PPM + D2.13C.PPM � 2*C.13C.PPM; abs(S) < sym_cutoff

Non-Equivalence Relationship Tests

RMS peak filtering

Center RMS 0 < C.RMSFit < 500

Doublet1 RMS 0 < D1.RMSFit < 500

Doublet2 RMS 0 < D2.RMSFit < 500

Linewidth peak filtering

Center 13C linewidth 10Hz < C.13C.LW < 1000Hz

Center 15N linewidth 10Hz < C.15N.LW < 1000Hz

Center 1HN linewidth 10Hz < C.1HN.LW < 1000Hz

Doublet1 13C linewidth 10Hz < D1.13C.LW < 1000Hz

Doublet1 15N linewidth 10Hz < D1.15N.LW < 1000Hz

Doublet1 1HN linewidth 10Hz < D1.1HN.LW < 1000Hz

Doublet2 13C linewidth 10Hz < D2.13C.LW < 1000Hz

Doublet2 15N linewidth 10Hz < D2.15N.LW < 1000Hz

Doublet2 1HN linewidth 10Hz < D2.1HN.LW < 1000Hz

Peak ordering

Doublet2–Center D2.13C.PPM > C.13C.PPM

Center–Doublet1 C.13C.PPM > D1.13C.PPM

Doublet2–Doublet1 D2.13C.PPM > D1.13C.PPM

Aliphatic hydrogen range E = (D2.13C.PPM � D1.13C.PPM)*conv_factor– offset; lower_bound < E < upper_bound

a The terms for the pseudocode are defined as follows: C, center peak; D1, upfield doublet peak; D2, downfield doublet peak; P.RMSFit, Sparky�s
RMS Fit score for peak P; P.D.PPM, chemical shift in ppm of peak P in dimension D.; P.D.LW, linewidth in Hertz of peak P in dimension D;

conv_factor, offset, lower_bound, upper_bound – RD-TR NMR experiment-specific parameters.
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but not all, Relationship Tests are similar to statistical

hypothesis tests. A typical example is a Relationship Test

that requires the Euclidian distance between chemical

shift values for two particular peaks in a group to be

within a cut-off value. We define two categories of Rela-

tionship Tests in a Pattern Model; Equivalence Relation-

ship Tests and Non-Equivalence Relationship Tests

(Table 2). Equivalence Relationship Tests can be parti-
tioned into separate Equivalence Relations. The set of

Equivalence Relationship Tests comparing the same di-

mension (i.e., chemical shift value) of all peaks to each

other in a Peak Group represents a single Equivalence

Relation. In other words, an Equivalence Relation de-

scribes a set of values that are all comparable to each

other. The Equivalence Relations provide the majority

of the discriminating power of the Pattern Model. The
number of Equivalence Relations is a good measure of

the complexity of the Pattern Model.

The set of confirmed Peak Groups (referred to as the

Confirmed List) provides a sampling of distances (with a

mean and standard deviation) characteristic of the par-
ticular data set. These values are then used to reparam-

eterize Relationship Tests in subsequent iterations.

Relationship Tests are usually constructed so that the

ideal population mean is zero and the cut-off value is

based on a set number of standard deviation units.

Cut-offs for Equivalence Relationship Tests in the same

Equivalence Relation use the standard deviation for the

Equivalence Relation as a whole. The initial standard de-
viations are guesses based upon what has worked be-

fore. Pattern Picker derives the standard deviation for

each Relationship Test or Equivalence Relation using

the Confirmed List and refines the value with each itera-

tion.

Most Relationship Tests define a random variable

X = f(Peak Group), where f is an algebraic function

that calculates the relationship of interest (e.g., the Eu-
clidean distance between two peaks in the example

above). Pattern Picker assumes X is approximately nor-

mally distributed. To conduct a hypothesis test, the Peak

Group is assumed valid with the alternative hypothesis

being the Peak Group is invalid. By default, Pattern Pick-
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er uses a confidence level of 99.9999998% which trans-

lates into six standard deviations from the mean. If the

p value of X is less than 0.0000002%, the null hypothesis

is rejected and it is concluded that the Peak Group is in-

valid. Hence, the probability of Type I error, namely re-

jecting a real Peak Group, is 0.0000002%. This is a good
approximation for near normal distributions. Even if the

distribution is far from normal, Chebyshev�s inequality2

bounds Type I error to at most 2.78%. As the number of

Relationship Tests increases, the number of hypothesis

tests increases, and one can become more confident in

the veracity of a particular Peak Group. Relationship

Tests within an Equivalence Relation are very related

and thus dependent; butRelationship Tests from different
Equivalence Relations are orthogonal to each other.

Another important aspect of the Pattern Model is an

Allowed Missing Method which determines whether a

particular peak in a Peak Group can be absent. Allowing

peaks in a group to be missing can account for over-

lapped weak or absent peaks in the spectrum and de-

rived peak list. For example, in experiments with Peak

Groups of size 15, having one or two missing peaks in
a group will modestly reduce the number of Relationship

Tests, and thus not reduce the confidence in a Peak

Group significantly given that the Relationship Tests

are equally distributed across the peaks in a group.

However, in experiments with only three peaks in a

group, such as many RD-TR NMR spectra, allowing

a missing peak will halve the number of Relationship

Tests and, more importantly, often eliminate a whole
Equivalence Relation (Table 2), seriously reducing the

confidence in a Peak Group.

Many NMR experiments exhibit overlap between

peaks from different Peak Groups. The Pattern Model

contains a Consistency Method that determines whether

a Peak Group has an allowed type of overlap with other

Peak Groups in the Confirmed List. In general, this

method checks to see if a particular Peak Group is con-
sistent with the Confirmed List (i.e., the Peak Groups de-

fined to be ‘‘real’’). For example, some peaks in a Peak

Group are only allowed to belong to one group. If two

Peak Groups both have this peak then they are not con-

sistent.

Lastly, a Pattern Model includes a Decoding Method

that extracts the information encoded in a Peak Group.

We define (i) additionally encoded information as the in-
formation encoded in the target peak pattern and not di-

rectly measurable from the characteristics of a single

peak, (ii) pattern-encoding dimensions as those dimen-

sions of the peaks encoding the additional information,

and (iii) non-pattern-encoding dimensions as those dimen-

sions not encoding any additional information. For RD-
2 P(x � l P kr) 6 1/k2; where l is the mean, r is the standard

deviation, and k is the number of standard deviation units [1].
TR experiments, the additionally encoded information is

the ‘‘projected’’ chemical shift encoded in the in-phase

splitting of the doublet peaks registered in the pattern-

encoding dimension of the N-dimensional spectrum;

e.g., the Ha chemical shift is the additionally encoded

information in the 13C pattern-encoding dimension in
Fig. 1.

Optionally, a Pattern Model may have additional Re-

lationship Tests used to evaluate the quality of the Con-

firmed List. A Pattern Model may also have an Error

Detection Method that uses statistics calculated from

the Confirmed List to compare related confirmed Peak

Groups for systematic errors like sinc wiggles. A Pattern

Model may also have an Outlier Detection Method for
detecting abnormal outlier Peak Groups using the un-

used peaks, detected overlapped peaks, and statistics

calculated from the Confirmed List.

2.3. Algorithm details

Fig. 3 presents a flow chart of Pattern Picker�s main

steps, while Fig. 4 shows a more detailed version of Pat-
tern Picker�s algorithm in the form of pseudo code.

First, Pattern Picker selects a Pattern Model to use. It

then reads the Logical Peak Sets from the input. Some

NMR experiments, such as GFT NMR experiments,

provide each peak in a group in a different subspectrum,

while others, like some RD-TR NMR experiments (e.g.,

[7,30,35]), provide all peaks in the same spectrum (that

is, they do not require a G-matrix transformation). Each
subspectrum in an NMR experiment is represented by a

Logical Peak Set and peak i in a Peak Group can only be

selected from the appropriate logical set. Hence, de-

pending on the experiment, the Logical Peak Sets can

be pair-wise disjoint or might contain non-empty inter-

sections.

As described above, DFS with short-circuiting cre-

ates the Potential List of Peak Groups using the Rela-

tionship Tests from the selected Pattern Model. Most

Relationship Tests involve only a subset of the peaks in

a Peak Group. The DFS performs the Relationship Test

as soon as it has selected all peaks necessary for that test.

The tests act as the short circuits in the DFS and inhibit

exploring unfruitful paths. Fig. 2 illustrates the process

by which a DFS with short circuiting finds a Potential

Peak Group for a RD-TR NMR Pattern Model. Incom-
plete Peak Groups (i.e., groups with missing peaks) are

created during the DFS by employing the Allowed Miss-

ing Method from the Pattern Model.

Next, each Peak Group in the Potential List is

scored. The score is a likelihood that allows compari-

sons between different potential Peak Groups that con-

flict with each other. Usually the likelihood is a

multiplication of Equivalence Relation probabilities,
since all Equivalence Relationship Tests are formulated

to allow easy calculation of probabilities (e.g., their
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expected mean is zero and their standard deviations

calculated from previous Confirmed Lists). Usually,

all Non-Equivalence Relationship Tests are excluded

from the calculation of the score since they are normal-

ly constructed as simple filters and are not easily used

to calculate a probability.

Likelihood ¼
YN

i

Probðv2DF i
P T iÞ; ð1Þ

where N is the number of Equivalence Relations, Ti is the

test statistic for Equivalence Relation i, and DFi are the

degrees of freedom for Ti.

A single Equivalence Relation probability is calculat-

ed assuming a v2 distribution of DFi degrees of freedom.

The test statistic is the summation of DFi ‘‘worst’’ Equiv-

alence Relationship Tests divided by their corresponding

standard deviation (Eq. (2)). Each ‘‘worst’’ Equivalence
Relationship Test is an independent variable correspond-

ing to the worst value from a row of related Equivalence

Relationship Tests in a matrix representing an Equiva-

lence Relation.

T i ¼
XDF i

j

ðX jÞ2

r2
i

; ð2Þ
where DFi is the degrees of freedom for Ti, Xj are the

worst random variable result from set j (matrix row)

of related Equivalence Relationship Tests, and ri is the

standard deviation for Ti (Equivalence Relation i).

Since the Equivalence Relation probabilities are not

framed as probabilities of the Peak Group�s existence,
their multiplication in Eq. (1) yields a likelihood and

not a probability; however, in practice this score works

well since it is only used to rank Peak Groups relative to

each other.

The Potential List is then sorted, in descending order,

by the likelihood score of each Peak Group (Eq. (1)).

Next, Pattern Picker moves Peak Groups from the Po-

tential List to the Confirmed List, one by one in a best
first approach according to their scores. But before mov-

ing a Peak Group to the Confirmed List, Pattern Picker

uses the Consistency Method from the selected Pattern

Model to ensure that the new Peak Group is consistent

with preexisting Peak Groups in the Confirmed List.

Since Peak Groups with higher scores are added first

and incorrect groups should theoretically have lower

likelihood scores, only correct Peak Groups should be
added to the Confirmed List. This best first approach

to verifying Peak Groups is faster than a global optimi-

zation approach and has the added benefit of isolating

confidence or reliability of individual parts of the results.

The only constraint on the DFS is that Peak Groups

have to fit the Pattern Model defined for the particular

NMR experiment. Hence, the DFS can create two Peak

Groups that fit the Pattern Model, but are inconsistent
with each other. For example, peaks from a restricted

Logical Peak Set are allowed to be members of only

one Peak Group; however, the DFS can create two

groups that share a particular peak from that restricted

Logical Peak Set. The probability of putting an invalid

Peak Group (i.e., Type II error related to the false posi-

tive rate) into the Potential List is significantly higher

than the probability of rejecting a valid Peak Group

(i.e., Type I error � 0.000001% related to the false neg-

ative rate) because Types I and II errors are inversely re-

lated when the sample size is constant [29]. However,

invalid Peak Groups in the Potential List will conflict

with valid Peak Groups in the Confirmed List. Thus, Pat-

tern Picker is simultaneously sensitive and selective en-

ough to keep both the false negative and false positive

rates low.
The Confirmed List of Peak Groups contains the

groups that Pattern Picker, believes are real Peak

Groups. However, the initial standard deviations used

in the Relationship Tests to determine these Peak Groups

are based on typical values observed in previously ana-

lyzed spectra and do not reflect unique features of the

particular spectrum under analysis. As such, this preli-

minary Confirmed List is used to calculate a new set
of standard deviations for the Relationship Tests. The

standard deviations are stored, and the entire preceding
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algorithm is re-run with these new statistics. The benefit
of this approach is that the calculated standard devia-

tions are better estimators for their respective popula-

tions than ones provided a priori. Also, better

standard deviations create better cut-offs for the Rela-

tionship Tests and more accurate v2 probabilities for

the scoring function. Both adjustments improve Pattern

Picker�s ability to identify legitimate Peak Groups and

distinguish ‘‘real’’ from ‘‘false’’ peaks.
When the preceding algorithm is run the next time,

the Confirmed List will generally change and more accu-

rately reflect the true Peak Groups in the data set. Since

the two Confirmed Lists are different, the calculated

standard deviations for the previous Confirmed List will

be different. The two sets of calculated standard devia-

tions are compared using an approximation to the F test

to test whether the sample statistics are a good measure
of the population statistics. If any standard deviation

calculated from the subsequent run is significantly differ-

ent from a deviation calculated in a prior run, then the

affected Relationship Tests will not accurately discrimi-

nate valid Peak Groups from invalid Peak Groups. This

could affect either the false negative or false positive

rates of the Confirmed List in this run. In this case, the
algorithm repeats with the new set of standard devia-
tions. This process iterates until the set of calculated

standard deviations from the ith Confirmed List con-

verge, i.e., they are not significantly different from the

standard deviations calculated for the i � 1st Confirmed

List. As long as the data is near normal and the early

Confirmed Lists have a significant proportion of real

Peak Groups, this iterative process generally converges

well either upwards from too few Peak Groups in the
Confirmed List or downwards from too many Peak

Groups in the Confirmed List. In practice, upward con-

vergence is faster since fewer Peak Groups are involved

and those present in the early Confirmed Lists are gener-

ally completely correct. In tests carried out to date, al-

most every data set has eventually converged within 15

iterations. The iterative process ensures that the stan-

dard deviations used by the Relationship Tests accurate-
ly reflect the data. In addition, they remove the

uncertainty for users by not requiring them to enter

any critical numerical parameters.

After convergence, a DFS may be run on the remain-

ing unused peaks, and detected overlapped peaks with

looser constraints to find any outlying Peak Groups

(Outlier Detection Method). The results of the outlier
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detection run are less accurate and generally require

manual culling. However, they serve as a useful guide

for identifying less well-defined (outlier) Peak Groups.

Finally, Pattern Picker generates a summary report

detailing information and statistics on each Peak Group,

including the constituent peaks and the likelihood score
for the group. The results of any additional Relationship

Tests not used in creating the Potential Lists are also in-

cluded to aid in error analysis. These additional Rela-

tionship Tests are not as reliable as the ones used to

create the Confirmed List; however, they provide a use-

ful validation of the selected Peak Groups. Also, the re-

sults from the Error Detection Method and Outlier

Detection Method in the Pattern Model are included as
well as statistics on detected and/or suspected over-

lapped peaks. The summary report facilitates the verifi-

cation of the results and serves as an aid for additional

manual analysis of spectra if such analysis is needed.

2.4. Reduced-dimensionality triple resonance NMR pat-

tern model

In this paper, we apply the general peak editing algo-

rithm described above in the analysis of RD-TR NMR

spectra; applications to other kinds of NMR data will

be presented elsewhere. RD-TR NMR experiments pro-

vide spectral data as a group of three peaks. As de-

scribed above, an N-dimensional RD-TR NMR

experiment encodes N + 1 chemical dimensions in each

Peak Group. The Equivalence Relations for this pattern
are displayed pictorially in Fig. 1. Each peak in a Peak

Group shares the same chemical shift for N � 1 non-pat-

tern-encoding dimensions. For the Nth pattern-encoding

dimension, each peak in the Peak Group has a distinct

chemical shift: the central peak exhibits the chemical

shift in the Nth pattern-encoding dimension about which

the outer doublet peaks are centered. The difference of

the shifts of the outer peaks is proportional to the chem-
ical shift of an N + 1st ‘‘projected’’ dimension and repre-

sents the additionally encoded information.

The complete set of Relationship Tests for the RD-

TR NMR Pattern Model is summarized in Table 2.

The 15N-Matching and 1HN-Matching Equivalence Re-

lations ensure that every peak in a Peak Group has sim-

ilar chemical shift values in the non-pattern-encoding

dimensions. A Doublet Symmetry Equivalence Relation

ensures that the central peak is the midpoint of the dou-

blet peaks in the pattern-encoding dimension. All of the

Relationship Tests comprising these three Equivalence

Relations are hypothesis tests. Not all Relationship Tests

in the RD-TR NMR Pattern Model (Table 2) are hy-

pothesis tests and members of an Equivalence Relation.

These include general peak filtering Relationship Tests

that filters obvious ‘‘false’’ peaks. In this work, we used
the program Sparky [10] for automated peak picking.

Sparky provides peak quality assessment scores (i.e.,
Fit RMS and linewidth), which are helpful in identifying

candidate ‘‘false’’ peaks. Sparky�s Fit RMS score is a

weighted root mean square of the deviations of a peak

from an ideal Lorentzian lineshape [10]. The RD-TR

Pattern Model includes a Non-Equivalence Relationship

Test that only accepts peaks with Fit RMS score be-
tween 0 and 500. Another Non-Equivalence Relationship

Test only accepts peaks with linewidths between 10 and

1000Hz. The upper bound is set unrealistically high due

to occasional inaccuracies in line widths reported by

Sparky. The RD-TR Pattern Model also includes a

range test which requires the encoded chemical shift val-

ue to be within an acceptable range. For instance, if the

encoded shift is an aliphatic hydrogen, and a particular
Peak Group projected a value outside the typical range

of �2 to 7ppm, then that particular Peak Group would

be suspect. The last Non-Equivalence Relationship Test is

a peak-ordering test that requires the central peak to be

between the doublet peaks in the pattern-encoding di-

mension.

The likelihood scoring function for the RD-TR Pat-

tern Model is based on the p values for the matching
of each peak in a Peak Group in the non-pattern-encod-

ing dimensions and the p value for the symmetry of the

central peak between the two doublet peaks. Since RD

NMR Peak Groups are only composed of three peaks,

permitting one missing peak drastically reduces the

number of testable Relationship Tests, especially the

Doublet Symmetry Relationship Test. Thus, while po-

tentially accommodated in Pattern Models of other
types of NMR experiments, missing peaks are not al-

lowed in the RD-TR Pattern Model. The Consistency

Method ensures that a doublet peak is not a member

of two different Peak Groups. In some RD-TR NMR

experiments, reusing the central peak is permitted,

allowing for resonance degeneracy in the non-pattern-

encoding and pattern-encoding dimensions.

A group of noise (random false) peaks successfully
passing all the RD-TR Relationship Tests is very im-

probable. However, systematic anomalies can be a sig-

nificant issue, such as sinc wiggles that create false

peaks around a legitimate peak. If each peak in a group

has sinc wiggles as shown in Fig. 5, then those sets of

false peaks can form an invalid Peak Group that passes

all the RD Relationship Tests.

Invalid Peak Groups due to sinc wiggles will always
be near a legitimate Peak Group. In addition, the peaks

in a group due to sinc wiggles will have a much weaker

intensity than the peaks in the legitimate group. The

Doublet Symmetry Relationship Test ensures that the in-

valid Peak Group will also have a chemical shift values

similar to those of a legitimate Peak Group. Thus, to de-

tect invalid groups due to sinc wiggles, Pattern Picker

searches for Peak Groups with similar chemical shifts
in the non-pattern-encoding dimensions and a similar

chemical shift in either the pattern-encoding dimension



Fig. 5. Sinc wiggles in the HABCABcoNH spectrum of E. coli yggU.

The real peaks have boxes drawn around them, while sinc wiggles do

not. The sinc wiggles around the doublet peaks are symmetric around

the central peak and thus pass all the Relationship Tests in the RD-TR

NMR Pattern Model (Fig. 1). However, the Error Detection Method,

discussed in the text, detects them. While it is possible to suppress sinc

wiggles for a specific peak by appropriate adjustment of processing

window functions, in general the ‘‘best’’ window function for a

particular spectrum will be suboptimal for the sharpest peaks in the

spectrum, and will result in sinc wiggles for some peaks.
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(i.e., the chemical shift of the central peak) or the addi-

tionally encoded information (i.e., the encoded chemical

shift value). The average intensities of two Peak Groups

that fit these criteria are compared and if one Peak

Group has an average intensity that is half an order of

magnitude less than the other group then the weaker

group is marked as a potential sinc wiggle artifact. These

‘‘sinc wiggle’’ Peak Groups are left in the output, but are

marked as likely to be spectral artifacts.
Another method for error detection is a simple count

of the number of weak peaks in a Peak Group. The input

for this analysis includes Sparky�s Fit RMS score. If this

Fit RMS score is low, a peak is considered weak. Al-

though we expect a certain number of weak peaks in

any experiment, a Peak Group with multiple weak peaks

is considered suspect.

The Consistency Method for the RD-TR NMR Pat-

tern Model permits reuse of central peaks; however, it

does not allow doublet peaks to belong to two different

Peak Groups. In certain cases, doublet peaks in an RD-

TR NMR experiment overlap. For instance, in a HAB-

CABcoNH experiment, the a and the b carbon cross
peaks fall in a line defined by their common 15N and
1HN frequencies. Occasionally, the upfield component

of a doublet around an a carbon will overlap with the

downfield component of a doublet around the b-carbon.
In this case, there will only be three doublet peaks in the

peak list when four are expected. Although both legiti-
mate Peak Groups will be created by the DFS, one group

will initially be eliminated as being inconsistent with the

other Peak Group during the consistency check. This is

the appropriate behavior because in the majority of

cases this eliminates invalid Peak Groups formed with

some legitimate peaks and some false peaks. However

in this case, this is not the correct behavior because both

Peak Groups are legitimate.
To detect these cases of overlap, we first assume that

the Ha–Ca Peak Group was added to the Confirmed List

and the Hb–Cb Peak Group was rejected by the consis-

tency check. The upfield peak of the Ha–Ca Peak Group,

which overlaps with the downfield peak of the Hb–Cb

Peak Group, will have a much stronger intensity than

the non-overlapped downfield peak of the Ha–Ca Peak

Group. With the assumption that the differences in inten-
sity are normally distributed, with a mean of zero and a

standard deviation derived from the data, Pattern Picker

can thus detect that the Ha–Ca Peak Group includes one

overlapped peak. These overlapped peaks are indicated

in the report. They are then added to the list of unused

peaks and used in an outlier Peak Group detection run

to automatically identify the Hb–Cb Peak Group.
3. Results

Escherichia coli open reading frame yggU codes for a

108 residue protein with unknown function (Swiss-Pro

ID, P52060). NMR data for yggU were collected at

20 �C on a four-channel Varian INOVA 600MHz

NMR spectrometer. The data were processed with
NMRPipe v2.1 [6]. Table 3 shows the acquisition and

processing parameters for HACAcoNH and HAB-

CABcoNH RD-TR NMR experiments used in testing

Pattern Picker.

After processing, we aligned each of the HACAcoNH

and HABCABcoNH spectra with a manually peak-pick-

ed 15N-edited HSQC spectrum. We then used the spec-

tral visualization software Sparky [10] to restrictively
peak pick these spectra using tolerances of ±0.04 and

±0.4ppm in the 1HN and 15N dimensions, respectively.

The restrictive peak lists were then filtered by intensity

to include twice as many peaks as expected in the exper-

iment. These intensity-filtered restrictive peak lists are

denoted as ‘‘raw’’ peak lists throughout the paper. Man-

ual inspection of both the HACAcoNH and HAB-

CABcoNH spectra showed additional correlations
arising from two unassigned histidines in the N-terminal

hexa-histidine (hexa-His) tag used for affinity purifica-



Table 3

Acquisition and processing parameters for RD-TR HACAcoNH and HABCABcoNH spectra of E. coli yggU

Parameters HACAcoNH HABCABcoNH

Acquisition

Frequency labeling (dimension) C(x1) N(x2) H(x3) C(x1) N(x2) H(x3)
Data collection size (points) 95 · 32 · 512 95 · 32 · 512

Number of transients 1 2

sw (Hz) 14998, 2123, 8384 14998, 2123, 8384

T1, max (ms) 6.3, 15.1, 61.1 6.3, 15.1, 61.1

Recycle delay (s) 1.06 1.06

Total time (h) 3.9 · 2 8 · 2

Processing

Final size (points) 512 · 256 · 1024 512 · 256 · 1024

Window function Sine bell Sine bell

Linear prediction In x2 In x2
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tion of yggU. These correlations from the flexible tag

were not observed in the 15N-edited HSQC and, appar-

ently, are enhanced by a relaxation-filtering effect in the

RD-TR NMR experiments. Thus, the automatically

peak-picked raw peak lists, which have been filtered to

remove peaks not represented in the 15N-edited HSQC

spectrum, lack peaks for these two histidines. We also

filtered these raw peak lists against a set of manually
peak-picked lists available for these same data sets [3]

and removed matching peaks. We then concatenated

the resulting ‘‘false’’ peaks with the manual lists to cre-

ate the ‘‘manual + false’’ peak lists. Analyses were thus

carried out for manually curated (‘‘manual’’), ‘‘manu-

al + false,’’ and ‘‘raw’’ peak lists. The ‘‘raw’’ peak lists

represent the typical RD-TR NMR data available with-

out manual analysis and curation, whereas the ‘‘manu-
al + false’’ peak lists represent complete RD-TR NMR

data with real ‘‘false’’ peaks.

Results of Pattern Picker using peak lists from RD-

TR HACAcoNH and HABCABcoNH spectra of yggU

are presented in Tables 4 and 5, respectively. In these

analyses, accuracy is defined as the number of correct

Peak Groups Pattern Picker recognized divided by the

total number of Peak Groups identified by the program.
‘‘False positives’’ are incorrect Peak Groups that Pattern
Table 4

Results of RD-TR HACAcoNH data analysis for E. coli yggU protein

Input list Accuracy False posit

Manual 100% 0%

(102/102) (0/102)

Raw 100% 0%

(99/99) (0/99)

Manual + False 100% 0%

(103/103) (0/103)

a This yield does not reflect the fact that the manually peak picked HSQC

two correlations in the HACAcoNH spectrum of E. coli yggU arising from th

101).
b This false negative value does not reflect the fact that the manually pea

corresponding to two correlations arising from the hexa-His tag in the HAC

1.98% (2/101).
Picker identified, and ‘‘yield’’ is the number of correct

Peak Groups recognized by the program divided by the

number of Peak Groups determined by a manual analy-

sis. ‘‘False negatives’’ are valid Peak Groups that Pattern

Picker did not recognize.

Pattern Picker was tested with the manual peak lists,

raw peak lists, and manual + false peak lists, for each

experiment described above. Tests with the manual peak
lists demonstrate the ability of Pattern Picker�s core al-

gorithms and methodology to properly group peaks to-

gether. For instance, in the HABCABcoNH, it is

important that Pattern Picker does not confuse a dou-

blet belonging to a b carbon for a doublet belonging

to an a carbon. Tests with the manual + false peak list

measure Pattern Picker�s ability to distinguish legitimate

groups from invalid groups when realistic false peaks
are included. These tests are independent of the data

completeness since all real peaks are present in the peak

lists. Tests with the raw peak lists measure Pattern Pick-

er�s ability to fully automate the peak picking/editing

analysis of RD-TR NMR experiments.

For both the HACAcoNH and HABCABcoNH data-

sets, Pattern Picker obtains 100% accuracy and 0% false

positives on all three peak lists; i.e., all of thePeak Groups
identified by the program are true Peak Groups. The
ives Yield False negatives

99.0% 0.97%

(102/103) (1/103)

96.1%a 3.88%b

(99/103) (4/103)

100% 0%

(103/103) (0/103)

used for restrictive peak picking did not have peaks corresponding to

e hexa-His tag, as explained in the text. The adjusted yield is 98.0% (99/

k picked HSQC used for restrictive peak picking did not have peaks

AcoNH spectrum of E. coli yggU. The adjusted false negative value is



Table 5

Results of RD-TR HABCABcoNH data analysis for E. coli yggU protein

Input list Accuracy False positives Yield False negatives

Manual 100% 0% 99.0% 0.98%

(203/203) (0/203) (203/205) (2/205)

Raw 100% 0% 88.8%a 11.2%b

(182/182) (0/182) (182/205) (23/205)

Manual + False 100% 0% 100% 0%

(205/205) (0/205) (205/205) (0/205)

a This yield does not reflect the fact that the manually peak picked HSQC used for restrictive peak picking did not have peaks corresponding to

four correlations in the HABCABcoNH spectrum of E. coli yggU arising from the hexa-His tag as explained in the text. The adjusted yield is 90.5%

(182/201).
b This false negative value does not reflect the fact that the manually peak picked HSQC used for restrictive peak picking did not have peaks

corresponding to four correlations arising from the hexa-His tag in the HABCABcoNH spectrum of E. coli yggU. The adjusted false negative value is

9.45% (19/201).
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program obtains nearly 100% yield on manual and man-

ual + false peak lists, and 96.1 and 88.8% yield on the raw

peak lists in theHACAcoNHandHABCABcoNHexper-

iments respectively; however, these numbers do not reflect

the fact that the manually peak picked 15N-edited HSQC

peak list used in the restrictive peak picking was missing

two peaks corresponding to two Peak Groups in the HA-

CAcoNH spectrum and four Peak Groups in the HAB-
CABcoNH spectrum. These Peak Groups correspond to
Table 6

Results for different restrictive peak picking protocols

Input list % of Expected Accuracy

HACAcoNH Raw Peak List

0.04/0.4 RPPf, Intensity filtered 200 100%

(99/99)

0.04/0.4 RPPf 285 100%

(101/101

0.06/0.6 RPPg 404 100%

(101/101

HABCABcoNH Raw Peak List

0.04/0.4 RPPf, Intensity filtered 200 100%

(182/182

0.04/0.4 RPPf 265 100%

(185/185

0.06/0.6 RPPg 383 98.4%

(190/193

a All errors have the worst scores and are at the bottom of the Confirmed

additional tests shown in the report.
b These yields do not reflect the fact that the manually peak picked HSQC

two correlations arising from the hexa-His tag in the HACAcoNH spectrum o

and 100% (101/101).
c These yields does not reflect the fact that the manually peak picked HSQ

four correlations arising from the hexa-His tag in the HABCABcoNH spectru

201), and 94.5% (190/201).
d These false negative values do not reflect the fact that the manually pe

corresponding to two correlations arising from the hexa-His tag in the HACA

1.98% (2/101), 0% (0/101), and 0% (0/101).
e These false negative values do not reflect the fact that the manually pe

corresponding to four correlations arising from the hexa-His tag in the HABC

are 9.45% (19/201), 7.96% (16/201), and 5.47% (11/201).
f Restrictive peak picking with tolerances of ±0.04 and ±0.4ppm in the 1

g Restrictive peak picking with tolerances of±0.06 and±0.6ppm in the 1
two unassigned histidine residues in the hexa-His tag of

the protein sample as explained above. Considering that

these peaks are eliminated from analysis by the restrictive

peak picking, the adjusted yields are 98.0 and 90.5% in the

HACAcoNH and HABCABcoNH experiments, respec-

tively. With these data sets, the fully automated peak ed-

iting of Pattern Picker performs almost as well as human

manual analysis. During error detection of the HACA-
coNH Confirmed List, Pattern Picker detected all five
False positivea Yield False negative

0% 96.1%b 3.88%d

(0/99) (99/103) (4/103)

0% 98.1%b 1.94%d

) (0/103) (101/103) (2/103)

0% 98.1%b 1.94%d

) (0/101) (101/103) (2/103)

0% 88.8%c 11.2%e

) (0/182) (182/205) (23/205)

0% 90.2%c 9.76%e

) (0/185) (185/205) (20/205)

1.55% 92.7%c 7.32%e

) (3/193) (190/205) (15/205)

List once sinc wiggles errors have been removed. They fail most of the

used for restrictive peak picking did not have peaks corresponding to

f E. coli yggU. The adjusted yields are 97.0% (99/101), 100% (101/101),

C used for restrictive peak picking did not have peaks corresponding to

m of E. coli yggU. The adjusted yields are 90.5% (182/201), 92.0% (185/

ak picked HSQC used for restrictive peak picking did not have peaks

coNH spectrum of E. coli yggU. The adjusted false negative values are

ak picked HSQC used for restrictive peak picking did not have peaks

ABcoNH spectrum of E. coli yggU. The adjusted false negative values

HN and 15N dimensions, respectively.

HN and 15N dimensions, respectively.
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Peak Groups due to sinc wiggles from the manual + false

peak list and all fourPeakGroups due to sincwiggles pres-

ent in the raw peak list. During error detection of the

HABCABcoNH Confirmed List, the program detected

all six Peak Groups due to sinc wiggles present in both

the manual + false peak list and the raw peak lists. The
sinc wiggle error detection exhibited no false positives in

analyzing these spectra.

In Table 6, we show results obtained when we vary

the restrictive peak picking protocol of Sparky. When

we increase the number of artifactual peaks in the input

peak lists by expanding the restrictive peak picking tol-

erances to ±0.06 and ±0.6ppm in the 1HN and 15N di-

mensions, respectively, the yield for the HACAcoNH
raw lists improves slightly from 96.1% (99/103) to

98.1% (101/103) with no change in accuracy; when the

missing hexa-His tag peaks from the manual HSQC

are considered, the calculated yield is 100% (101/101).

For the HABCABcoNH raw lists, the less conservative

peak picking increases the yield from 88.8% (182/205)

to 92.7% (190/205); i.e., 94.5% (190/201), once the miss-

ing peaks from the manual HSQC list are considered.
However, the accuracy drops to 98.4% (190/193) with

a 1.6% (3/193) false positive rate; but, the three incor-

rectly identified Peak Groups are among the seven with

lowest scores in the Confirmed List, and fail some of

the additional tests in the report. Overall, these results

demonstrate the robustness of the Pattern Picker algo-
Table 7

Relationship test discrimination power

Relationship Tests Used yggU H

Non-Equivalence Relationship Tests

Peak Filtering 4,949,4

(34.4%

Peak Ordering 2,640,3

(18.4%

Aliphatic hydrogen range 6,786,7

(47.2%

Equivalence Relations
15N-Matching 4658

(0.0324
1HN-Matching 24,603

(0.171%

Doublet symmetry 143,538

(0.100%
15N-Matching and 1HN-Matching 1284

(0.0089
15N-Matching and Doublet symmetry 162

(0.0011
1HN-Matching and Doublet symmetry 382

(0.0027

All Equivalence Relations 122

(0.0008

All Relationship Tests 111

(0.0007

a The total number of combinations of three peaks from the raw peak lis
b The total number of combinations of three peaks from the raw peak lis
rithm in distinguishing real from artifactual peaks in

the input peak lists.
4. Discussion

The excellent and robust results of Pattern Picker on

manual and manual + false peak lists demonstrate the

discriminating power of the RD-TR NMR Pattern

Model to detect correct Peak Groups in these types of

RD-TR NMR experiments. Most of the discrimination

power arises from the three Equivalence Relations of Re-

lationship Tests: 15N-Matching, 1HN-Matching, and

Doublet Symmetry (Table 2). Table 7 shows the discrim-
inating power of each set of Relationship Tests separate-

ly and all combinations of Equivalence Relations on the

raw peak lists. The numbers represent the size of the Po-

tential List of Peak Groups when using only the given

Relationship Tests. The numbers in parenthesis are the

percent ratio to a Potential List when no Relationship

Tests are used. When no Relationship Tests are used to

discriminate, the sizes of the Potential Lists are
14,384,898 and 165,487,086 Peak Groups, for the

HACAcoNH and HABCABcoNH raw peak lists,

respectively. Of the three Equivalence Relations, the
15N-Matching Equivalence Relation is the most discrim-

inating. This is to be expected since the dispersal of

chemical shift values is larger for the 15N-Matching
ACAcoNHa yggU HABCABcoNHb

90 39,991,830

) (24.2%)

72 28,815,157

) (17.4%)

38 117,302,525

) (70.9%)

119,273

%) (0.0721%)

538,592

) (0.3255%)

1,616,654

) (0.9769%)

21,149

0%) (0.0128%)

1467

0%) (0.000886%)

5604

0%) (0.00339%)

452

00%) (0.000273%)

241

72%) (0.000146%)

t: 14,384,898.

t: 165,487,086.
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Equivalence Relation than for the 1HN-Matching and

Doublet Symmetry Equivalence Relations. However,

the discriminating power of combinations of Equiva-

lence Relations is not as intuitive. The 15N-Matching

and Doublet Symmetry combination is almost eight

times more discriminating than the 15N-Matching and
1HN-Matching combination in the HACAcoNH results

and more than 14 times as discriminating in the HAB-

CABcoNH results, even though the latter combination

use the two Equivalence Relations with the best single

discrimination power. The combination of all three

Equivalence Relations along with other ‘‘common sense’’

Non-Equivalence Relationship Tests produces the Poten-

tial List of Peak Groups that Pattern Picker finds. The
Non-Equivalence Relationship Tests are not very discrim-

inating by themselves; however, for the HAB-

CABcoNH, they almost double the overall

discrimination power when combined with the three

Equivalence Relations. The difference between the three

individual Equivalence Relation results and all Relation-

ship Test results are not that significant for the HACA-

coNH raw list. The final discrimination of the Potential
List to the Confirmed List arises from the best first con-

sistency testing.

The Pattern Picker algorithm is very robust with re-

spect to noise and other artifacts. It even handles very

‘‘noisy’’ peak lists with up to four times the number of

expected peaks, with the accuracy dropping only to

98.4% (Table 6). However, it is easy to see from Table

7 why missing a single peak in a Peak Group greatly re-
duces the discriminating power of the Pattern Model.

Missing any single peak takes the Doublet Symmetry

Equivalence Relation away. This reduces the discriminat-

ing power by �10-fold in the HACAcoNH raw peak list

and by �50-fold in the HABCABcoNH raw peak list.

Since the RD-TR NMR Pattern Model is very sensitive

to missing peaks, this particular Pattern Model requires

all Peak Groups to be complete.
The excellent results of Pattern Picker with the raw

peak lists demonstrate that this approach to automated

peak list editing is practical. It is also convenient to use

since all critical numerical parameters are derived from

the data and iteratively optimized by the program. Be-

cause the RD-TR NMR Pattern Model is so discrimi-

nating and can handle large numbers of false peaks,

weak Peak Groups can be detected because the underly-
ing restrictive peak picking can cut very close to the

noise level to minimize false negatives. Future develop-

ment of peak pickers for use with peak list editors like

Pattern Picker could focus on minimizing the rate of

false negatives without worrying how much this increas-

es the rate of false positives.

Still, the raw peak lists used in these analyses are not

completely unedited. They are the results from restric-
tive peak picking using a manually peak picked 15N-ed-

ited HSQC. Requiring a manually edited and inspected
HSQC peak list for the process of automatic peak pick-

ing/editing of a series of RD-TR NMR spectra is rea-

sonable since it is rather quick and easy to obtain and

is generally used anyway to restrictively peak pick prior

to automated NMR data analysis [18,36].

Some RD NMR experiments cannot be as effectively
restrictive peak picked. For example, the RD HCCH

COSY and TOCSY experiments [35] are not as cleanly

restrictive peak picked using a 13C-edited HSQC because

of the 1H–13C cross peak overlap in this 2D spectrum

[18]. However, these experiments have symmetry correla-

tions that may be used in a similar manner to the restric-

tive peak picking. A solvent line exclusion Relationship

Test may be used in the core Pattern Model and then re-
placed with a symmetry correlation Relationship Test in

the outlier detection run. Such a symmetry correlation

Relationship Test would require the presence of a match-

ing symmetry correlation in the Confirmed List.

There are other types of experiments that encode in-

formation in groups of peaks. Certain residual dipolar

coupling experiments [25] and 1J-resolved E-COSY ex-

periments [19,20] have characteristic patterns, which
can be supplemented and enriched by appropriate data

combinations. For example, by combining aligned and

non-aligned spectra, together with fully decoupled spec-

tra, standard RDC experiments can be represented as 5-

peak patterns which are highly amenable to Pattern

Picker analysis (unpublished results). Combinations of

experimental approaches can be used to create new ex-

periments with even larger patterns. For example, the re-
cently described G-matrix FT experiment provides a

rich 15-peak pattern [15]. Pattern Models to handle these

experiments have more Equivalence Relations to test and

significantly more discriminating power than the RD-

TR NMR Pattern Model presented here. With increas-

ing discriminating power, Pattern Picker�s results for

those experiments would be even more reliable and

should detect even weaker correlations in their spectra.
Pattern Picker�s algorithm is also fast. A brute force

approach would perform approximately 244 million

Relationship Tests in the analysis of the yggU RD-TR

HACAcoNH raw peak list. Pattern Picker�s DFS with

short-circuiting algorithm performs the same analysis

with less than 2.5 million Relationship Tests. Each Pat-

tern Picker analysis performed for this paper took less

than 2s on a 1.4GHz AMD Athlon processor running
RedHat Linux 7.3, except the HABCABcoNH 0.06/0.6

RPP raw analysis (Table 6), which took 8s. As the num-

ber of testable Peak Groups and Relationship Tests in-

creases exponentially with the number of peaks in a

pattern, the enhancement in performance using DFS

with short-circuiting over brute force tree searches will

be even larger in analyzing spectra with more complex

patterns.
In conclusion, Pattern Picker�s overall algorithm is

robust on these RD-TR NMR experiments. It is also
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fast and practical to use. The algorithm neatly divides

correlation detection into two separate problems, peak

picking and peak editing, which can be separately opti-

mized. Moreover, the program naturally fits into any

automated process for peak picking and peak list edit-

ing. The program also provides facilities for handling
experiments that encode information in groups of peaks,

thus promoting the use of these experiments that are

typically harder for a human to analyze. This opens

up additional areas to explore in experiment design since

the complexity of the pattern is now a benefit, and not a

drawback, to analysis.
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